Odonate Diversity in Selected Habitats of Sringeri Taluk, Chikmagalur district

Akshatha Rao B S, Anusha T N, Karthik M K, Lakshmi K S, Pavan Kumar K S, Shashwathi H S, Vagdevi Rao K C, Vishwajith HU Keshava Murthy M V*

Department of Zoology, Sri J C B M College Sringeri Corresponding author: Keshava Murthy M V

Abstracts: Dragonflies and Damselflies, collectively called Odonates and are one of the most common insects flying over forests, fields, meadows, ponds and rivers. Few streams, ponds, marshes, swamps and hilly green areas with lesser disturbance of humans were selected for the present study. Transect method was employed for the present study. A line transect of 500m length was laid in ten selected study areas and the odonates observed along the transects were documented and photographed. The diversity and abundance of the documented species of dragonflies and damselflies were measured and the Shannon and Simpson's diversity indices were calculated using the standard formulae available. 52 species belonging to 28 genera and 10 families are documented in the present study. Out of these 29 are Anisopterans (Dragonflies) and remaining 23 are Zygopterans (Damselflies).

Date of Submission: 05-09-2017

Date of acceptance: 28-09-2017

I. Introduction

Dragonflies and damselflies collectively called Odonates, are one of the most common insects flying over forest, fields, meadows, ponds and rivers. About 5,000 species of odonates are found throughout the world. In India about 500 species and subspecies are reported (1). The extant dragonflies are divided into two suborders, the Zygoptera (damselflies) and the Anisoptera (dragonflies). Until recently a third suborder, Anisozygoptera, was recognized with two extant species from Japan and the eastern Himalayas (2). The Odonates are amphibiotic insects. They spend a major part of their life cycle in fresh water ecosystem. The adults are generally predacious insects, while the larvae are carnivores and voracious. Even though the species are usually highly specific to a habitat, some have adapted to urbanization and use man-made water bodies (3). The life history of odonates is closely associated with wetlands. Adults lay eggs in specific aquatic habitats. The larvae which emerge from the eggs are predatory and they feed on diverse aquatic organisms such as small crustaceans, aquatic insects, tadpoles and small fish. Adult odonates usually emerge during late evening or early morning. Emerged odonates colonize landscape surrounding the wetland. Male odonates are generally more brightly coloured than females. Adults catch insects such as small flies, mosquitoes, butterflies and other small odonates in flight (4). Odonates are good indicators of environmental changes as they are sensitive to changes in the habitats, atmospheric temperature and the weather conditions. They are biocontrol agents; many species of odonates inhabiting agro ecosystems play a crucial role controlling pest population (5).

2.1Study area

II. Materials And Methods

The study areas come under the taluks of Sringeri and Tirthahalli which are amongst the famous tourism places of Karnataka. The place with hills and planes travelled by the holy river Tunga and its tributaries has bestowed rich diversity of flora and fauna which is well known for its vegetation, especially the medicinal herbs. The selected study areas include a few streams and pond, marshes, swamps, hilly green areas with lesser disturbance of humans.

2.2Field methods

Odonata study was carried out from the month of August 2016 to October 2016. Transect method was employed for the present study. A line transect of 500m length was laid in each of the study areas and the observed odonates along transect were documented and photographed. For photography, Nikon coolpix L340 and Nikon coolpix L40 cameras were used. Documented species were identified using standard manuals published earlier (13).

The frequency, density, abundance, SIV (Species Important Value), Shannon's and Simpson's diversity indices for all documented specie are calculated by using respective formulae (6, 7, 8).

FREQUENCY	=	Number of transects in which the species occurred	
		Total number of transects studied	
RELATIVE FREQUENCY=		Frequency of a species × 100	
		Total frequency of all the species	
DENSITY	=	Total number of individuals of a species	
		Total number of transects studied	
RELATIVE DENSITY	=	Density of a species × 100	
		Total density of all the species	
ABUNDANCE	=	Total number of individuals of a species in all transects	
		Total number of transects in which the species has occurred	

Species Importance Value (SIV) = Relative frequency + Relative density SHANNON'S DIVERSITY INDEX= $H= \sum pi \ln pi$, where pi=(ni/N)SIMPSON'S VALUE, $D = \sum ni(ni-1)/N(N-1)$

III. Result

A total of 52 species belonging to 28 genera and ten families are documented during the present study (TABLE1) (viz., Aeshnidae, Libellulidae and Gomphidae belonging to Anisoptera, Coenagrionidae, Protoneuridae, Euphaeidae, Calopterygidae, Platycnemididae, Lestidae and Chlorocyphidae belonging to Zygoptera). Out of which 29 are Anisopterans and remaining 23 are Zygopterans.

Among the listed species, *Pantala flavescens* was found to be the species with highest Species Importance Value (SIV) of 24.36, followed by *Diplacodes trivialis* (14.64), *Orthetrum sabina* (12.50), *Neurothemis fulvia* (10.68) and *Orthetrum chrysis* (9.99). Further, the most frequently distributed among the documented species was *Diplacodes trivialis* with a frequency value of 1.0, followed by *Orthetrum sabina* (0.90), *Pantala flavescens* (0.90), *Neurothemis fulvia* (0.80) and *Lathrecista asiatica* (0.70). Besides, among the listed species, *Pantala flavescens* was found to have the highest density value of 11.30, followed by *Diplacodes trivialis* (4.80), *Aciagrion occidentale* (4.00), *Pseudagrion microcephalum* (4.00) and *Orthetrum sabina* (3.90. Likewise, the most abundant of the listed species was found to be *Pseudagrion microcephalum* and *Aciagrion occidentale* with an abundance value of 40.00 each, followed by *Pantala flavescens* (12.56), *Rhinocypha bisignata* (10.00) and *Ceriagrion cerinorubellum* (6.40)

The diversity of odonates in these selected habitats is comparatively rich because it showed a Shannon's value of 3.13 and Simpson's value of 0.07.

IV. Conclusion

The present study focuses mainly on the diversity of odonates in selected habitats of Sringeri and Teerthahalli taluk. The diversity in these habitats is very rich when compared with the other available earlier published data. Only 34 species are documented from Gorewada International biopark (9), only 22 from Chatri Lake Region, in Pohara – Malkhed Reserve Forest, Amravati, Maharashtra (India) (10), 30 from Palamau Tiger Reserve, Jharkhand, India (11), 14 from Ankal village of Gulbarga and 34 from Kondajji lake, Davanagere (12).

However, in this study we focused a very small part of the selected geographical areas. Repetitive surveys and documentations which considerably minimize the errors are not carried out. More precise studies will definitely add potential results.

Common name	Scientific name	Family
Asiatic blood tail	Lathrecista asiatica	Libellulidae
Black marsh trotter	Tramea limbata	Libellulidae
Blue darner	Anax immaculifrons	Aeshnidae
Blue hawklet	Hylaeothemis fruhstorferi	Libellulidae
Blue marsh hawk	Orthetrum glaucum	Libellulidae
Blue tailed yellow skimmer	Palpopleura sexmaculata	Libellulidae
Brown backed red marsh hawk	Orthetrum chrvsis	Libellulidae
Common club tail	Ictinogomphus rapax	Gomphidae
Crimson marsh glider	Trithemis aurora	Libellulidae
Crimson tailed marsh hawk	Orthetrum pruinosum	Libellulidae
Dancing drop wing	Trithemis pallidinervis	Libellulidae
Ditch jewel	Brachythemis contaminata	Libellulidae
Evening skimmer	Tholymis tillarga	Libellulidae
Fulvous forest skimmer	Neurothemis fulvia	Libellulidae
Granite ghost	Bradinopyga geminata	Libellulidae
Green marsh hawk	Orthetrum sabina	Libellulidae
Ground skimmer	Diplacodes trivialis	Libellulidae
Lesser blue wing	Rhyothemis triangularis	Libellulidae
Parakeet darner	Gynacantha bayadera	Aeshnidae
Picture wing	Rhyothemis variegata	Libellulidae
Pied paddy skimmer	Neurothemis tullia	Libellulidae
Pigmy skimmer	Tetrathemis platyptera	Libellulidae
Plain sinuate clubtail	Burmagomphus laidlawi	Gomphidae
Ruddy marsh skimmer	Crocothemis servilia	
Tricolour mersh hould	Neurotnemis intermedia	Libellulidae
Trumpet tail	Acisoma panorpoides	Libellulidae
Wandering glider	Pantala flavescens	Libellulidae
Aciagrion	Aciagrion	Coenagrionidae
Black winged bambootail	Disparoneura auadrimaculata	Protoneuridae
Black-tipped forest glory	Vestalis apicalis	Calopterygidae
Blue bush dart	Copera vittata	Platycnemididae
Blue grass dartlet	Pseudagrion microcephalum	Coenagrionidae
Clear-winged forest glory	Vestalis gracilis	Calopterygide
Coorg bambootail	Caconeura ramburi	Protoneuridae
Coromandel marsh dart	Ceriagrion coromandelianum	Coenagrionidae
Emerald spreadwing	Lestes elatus	Lestidae
Golden dartlet	Ischunura aurora	Coenagrionidae
Green striped slender dartlet	Aciagrion occidentale	Coenagrionidae
Malabar torrent dart	Euphaea fraseri	Euphaeidae
Orange marsh dart	Ceriagrion rubiae	Coenagrionidae
Drange-tailed marsh dart	Ceriagrion cerinorubellum	Coenagrionidae
Pad striped threadtail	Prodasingura varticalis	Protoneuridae
River heliodor	Libellago lineata	Chlorocyphidae
Rusty marsh dart	Ceriagrion olivaceum	Coenagrionidae
Saffron reedtail	Platysticta deccanensis	Platycnemididae
Splendid dartlet	Agriocnemis splendidissima	Coenagrionidae
Stream glory	Neurobasis chinensis	Calopterygidae
Stream ruby	Rhinocypha bisignata	Chlorocyphidae
White dartlet	Agriocnemis pieris	Coenagrionidae

TABLE 1- List of Documented species

Fig1.Graph showing the differences in diversity of Odonates of Different regions

References

- Nair, M.V. (2011) Dragonflies & Damselflies of Orissa and Eastern India. Wildlife Organisation, Forest & Environment Department, Government of Orissa. Jyoti Graphics, Bhubaneswar, India, 254.
- Kalkman, V.J., Clausnitzer, V., Dijkstra, K.B., Albert, G.O., Paulson, D.R. & Tol, J.V. (2008), Global diversity of dragonflies (Odonata) in freshwater. Hydrobiologia, 595:351-363.
- [3]. Andrew, R.J., K.A. Subramaniam & A.D. Tiple (2009). A Handbook on Common Odonates of Central India. South Asian Council of Odonatology, 65
- [4]. Andrew, R.J., Subramaniam, K. A. & Tiple, Ashish D. (2008) A Handbook on Common Odonates of Central India. Published for "The 18th International Symposium of Odonatology"
- [5]. Tiple, A.D., A.M. Khurad & R.J. Andrew, (2008). Species Diversity of Odonata in and around Nagpur City, Central India. Fraseria (Proceeding of the 18th International Symposium of Odonatology, Nagpur) 7: 41–45
- [6]. Cottam,g.,Curtis, J. T., (1956). The use of distance measurements in phytosociological sampling.ecology,37:451-460
- [7]. Shannon and Wiener, (1963). The mathematical theory of communication, University of Illinosis Press, Champaign. IL, 320
- [8]. Simpson, E.H., (1949). Measurement of Diversity.Nature,London,163,688.
- [9]. Shende V. A., Patil. K. G., (2013), Diversity of dragonflies (Anisoptera) in Gorewada International Bio-Park, Nagpur, Central India
- [10]. Manwar N.A., Rathod P P and Raja I A., (2012)., Diversity and abundance of Dragonflies and Damselflies Of Chatri Lake Region, in Pohara – Malkhed Reserve Forest, Amravati, Maharashtra (India)International Journal of Engineering Research and Applications (IJERA) Vol. 2, Issue 5,521-523
- [11]. Sajan S. K., Patel J R, Bakshi M K, Singh A K, Kazmi S.E.H, Mishra A K and Anand P., (2014), Diversity and abundance of Odonata in Palamau Tiger Reserve, Jharkhand, India., Advances in Applied Science Research, 5(6):126-131.
- [12]. Harisha M N., (2016) Evaluation of Status and Diversity of Odonates of Kondajji Lake, Kondajji Village, Harihar Taluk, Davanagere District, Karnataka, India., JEZS; 4(4): 384-388
- [13]. Subramanian, K.A. (2009). Dragonflies and Damselflies of Peninsular India A Field Guide. Vigyan Prasar, Noida, India.

Akshatha Rao B S. "Odonate Diversity in Selected Habitats of Sringeri Taluk, Chikmagalur district." IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), vol. 11, no. 9, 2017, pp. 56–59.

_ _ _ _ _